

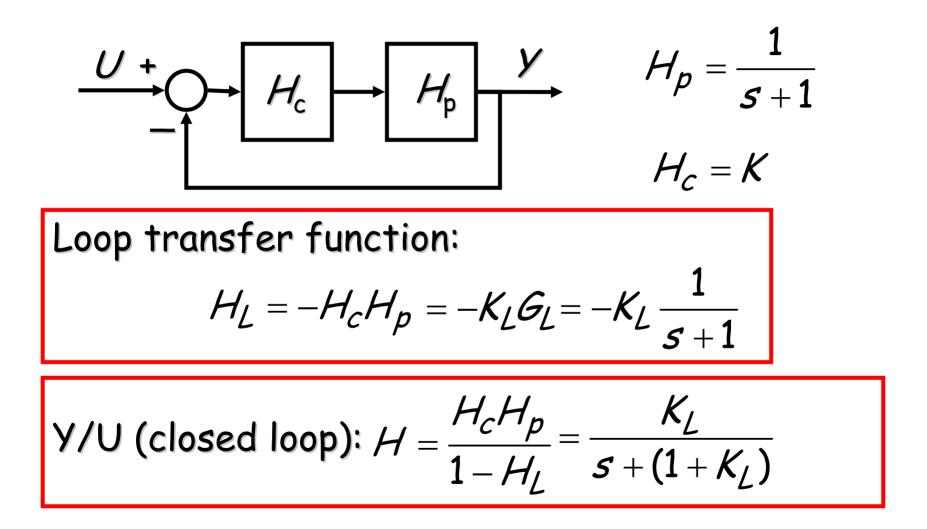
Root loci

Job van Amerongen

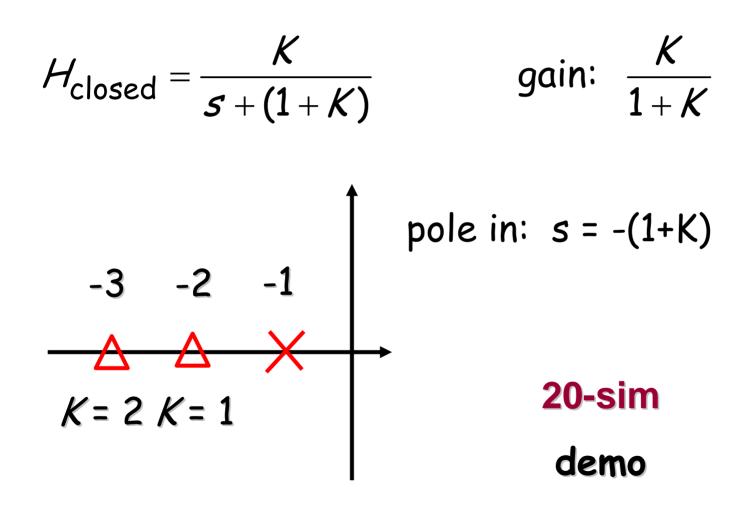
Control Laboratory, Department of Electrical Engineering University of Twente, Netherlands www.ce.utwente.nl/amn J.vanAmerongen@utwente.nl

- Poles of open and closed system
- Root locus
 - definition
 - drawing rules
 - examples
- τ locus
- Powerful design tool

Open and closed systems

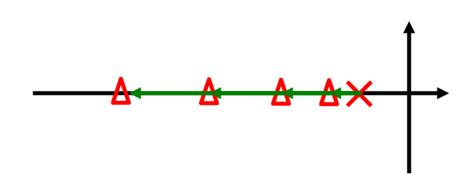


Demo



In a feedback system:

- when K increases, pole goes further to the left
- response is faster
- accuracy is better



Demo (second order)

Control Engineering University of Twente

$$H_{p} = \frac{K'}{(s+1)(s+3)} \longrightarrow H = \frac{\frac{K'}{(s+1)(s+3)}}{1 + \frac{K'}{(s+1)(s+3)}}$$
closed-loop poles:

$$p_{1,2} = \frac{-4 \pm \sqrt{16 - 4(3 + K')}}{2}$$

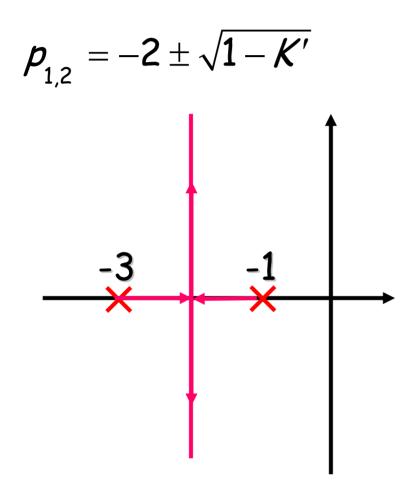
$$H = \frac{K'}{(s+1)(s+3) + K'}$$

$$H = \frac{K'}{(s+1)(s+3) + K'}$$

$$H = \frac{K'}{s^{2} + 4s + 3 + K'}$$
20-sim

Lecture 4 Root Loci (6)

Demo (second order)



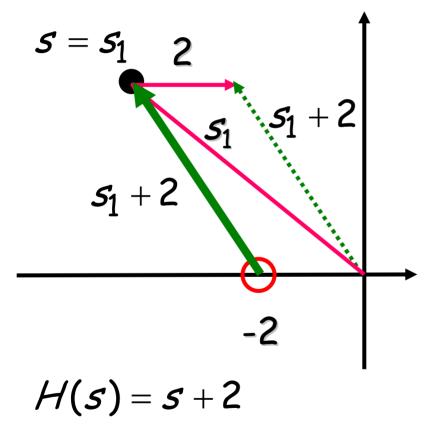
- *K*'= 0: poles in -1 and -3
- K' < 1: two real poles between -1 and -3
- K '= 1: two real poles in -2

K '> 1: two complex poles with Re part -2

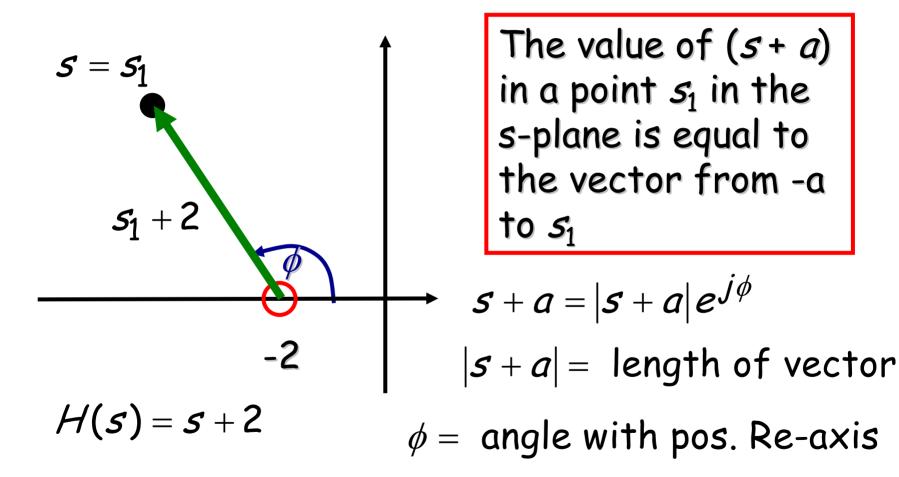
Higher-order

- Difficult to solve manually
- Use **20-sim**, MATLAB, ...
- Use graphical method:
- Root locus
 - The root locus gives the locations of the poles of the closed system for variations in the loop gain of the system

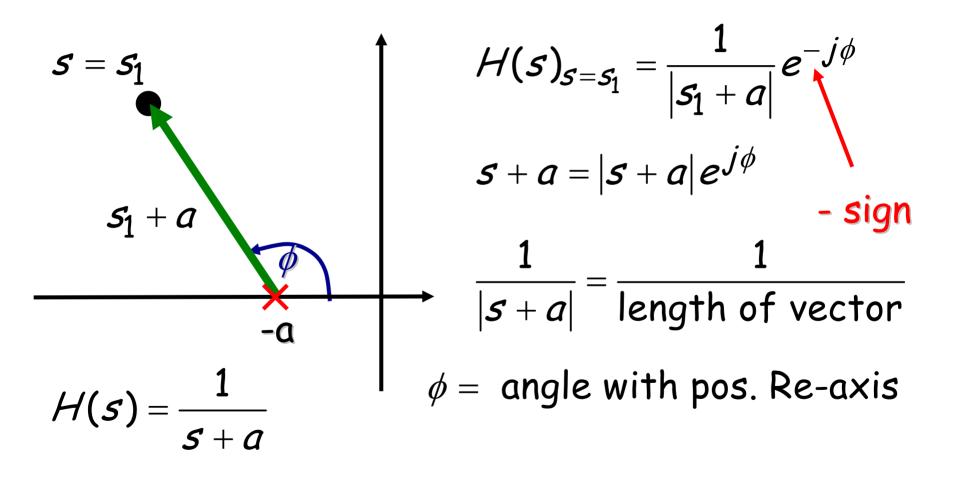
Graphical evaluation (zero)



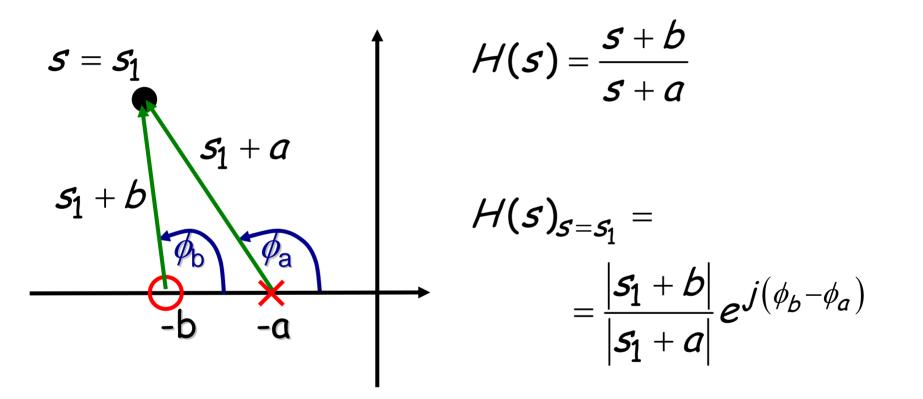
Graphical evaluation (zero)



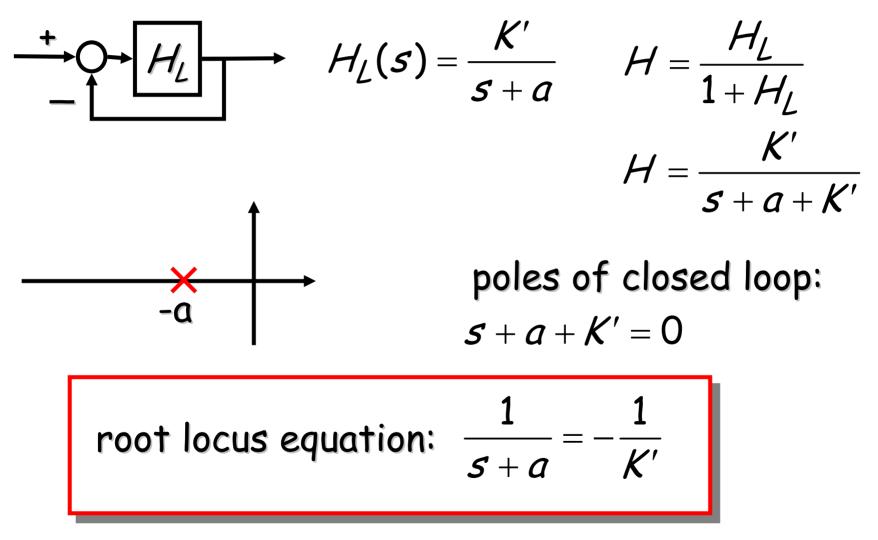
Graphical evaluation (pole)



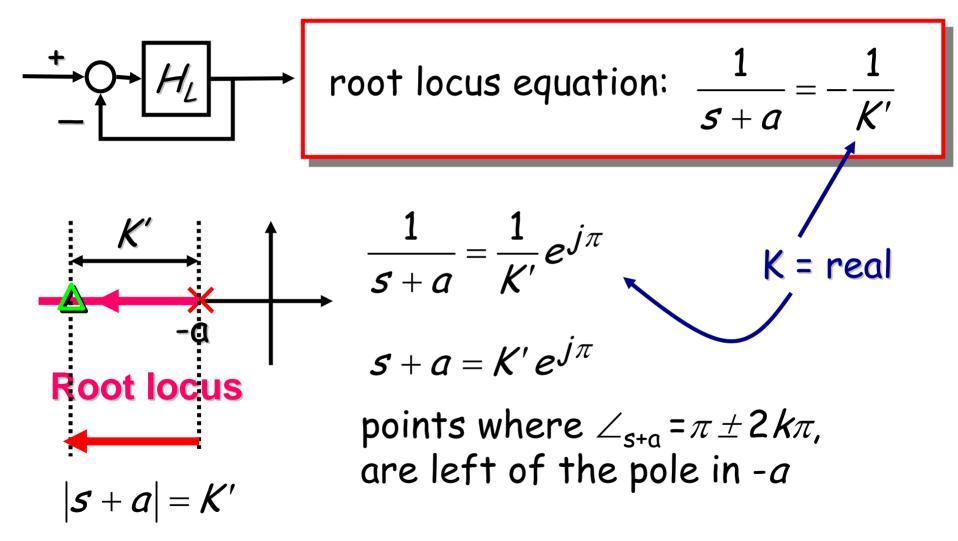
Graphical evaluation



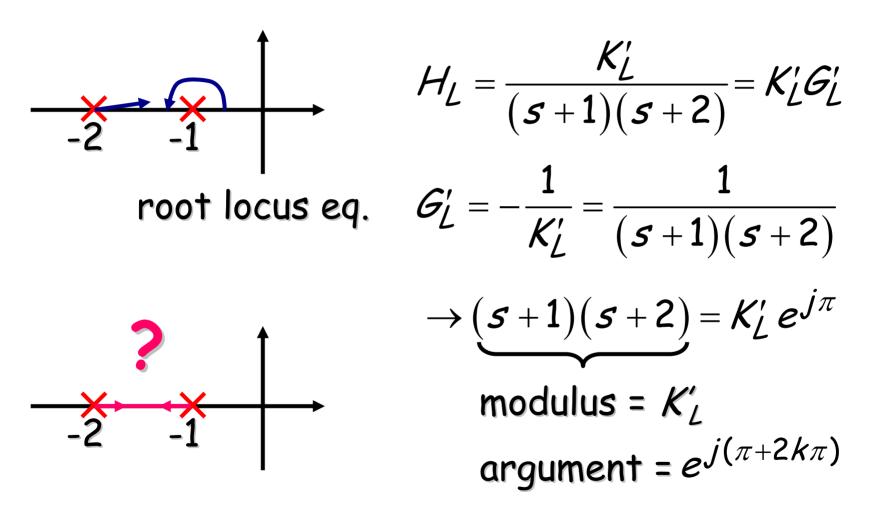
Root locus equation



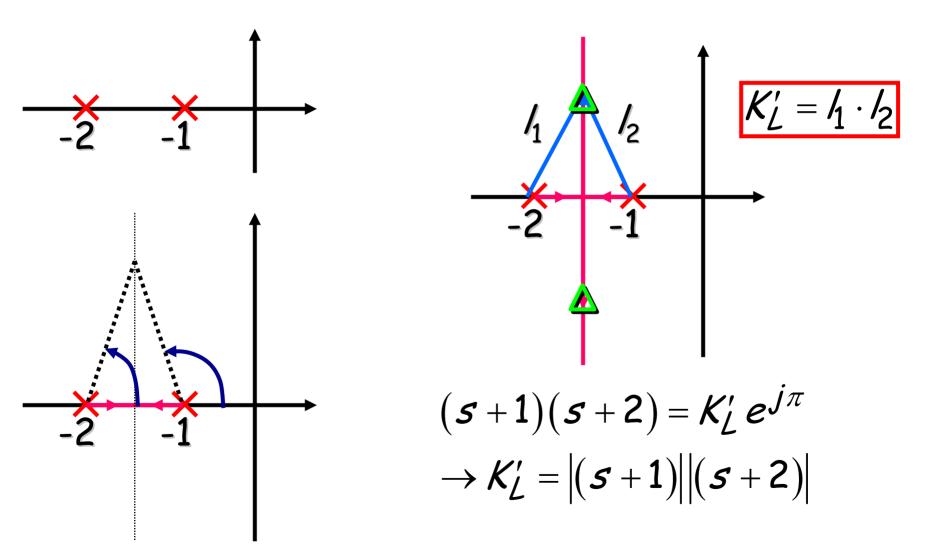
Root locus (first order)



Root locus (second order)

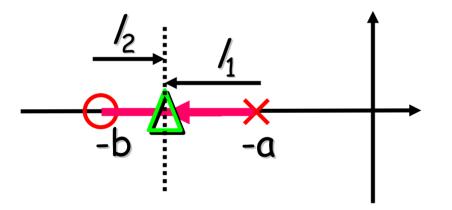


Root locus (second order)



Root locus (pole and zero)

$$H(s) = K'_L \frac{s+b}{s+a}$$



$$\frac{s+b}{s+a} = -\frac{1}{K'_L}$$

$$\mathcal{K}'_{\mathcal{L}} = rac{|\mathcal{S} + a|}{|\mathcal{S} + b|}$$

$$K'_{L} = \frac{l_1}{l_2}$$

- first order (pole in -1)
- second order (poles in -1 and -2)
- pole and zero
- step responses for various values of

 "argument = -180 degrees" rule too complex for manual construction of complex root loci

- Derive a set of rules that allows easy construction
- (based on the above rule)

root locus equation:
$$G'_L = -\frac{1}{K'_L}$$

• The root locus for variations in K'_{L} starts for $K'_{L} = 0$ in the poles of G'_{L} and ends for $K'_{L} \rightarrow \infty$ in the zero's of G'_{L} or in ∞ (if there are more poles than zero's)

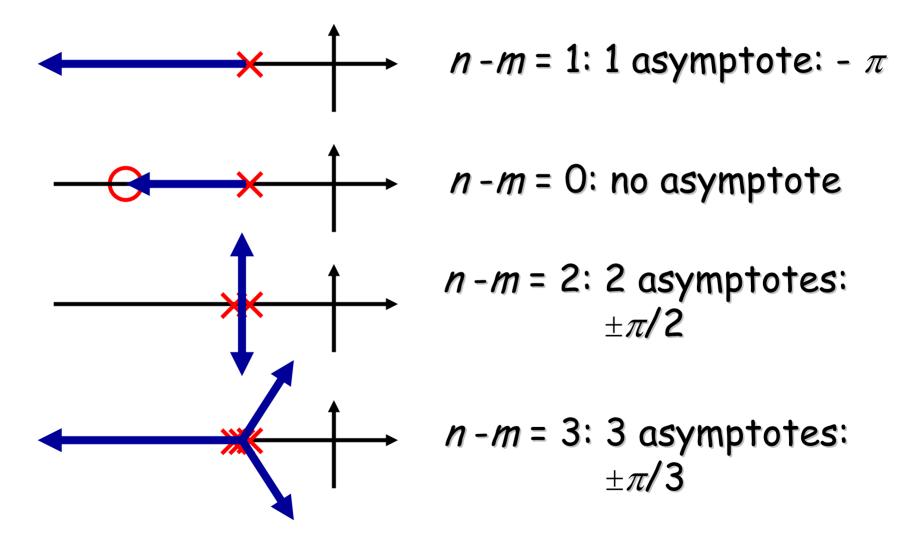
Rule 2 (real axis)

root locus equation:
$$G'_L = -\frac{1}{K'_L}$$

• The locus includes all points along the real axis to the left of an odd number of poles plus zero's of G'_L

- for $K'_{L} \rightarrow \infty$ the branches of the locus become asymptotic to straight lines with angles $\theta = \frac{\pi \pm 2k\pi}{n-m}$
 - for k = 0, ± 1, ± 2, ..., until all *n*-m angles are obtained, where n is the the number of poles and m the number of zero's

Rule 3 examples



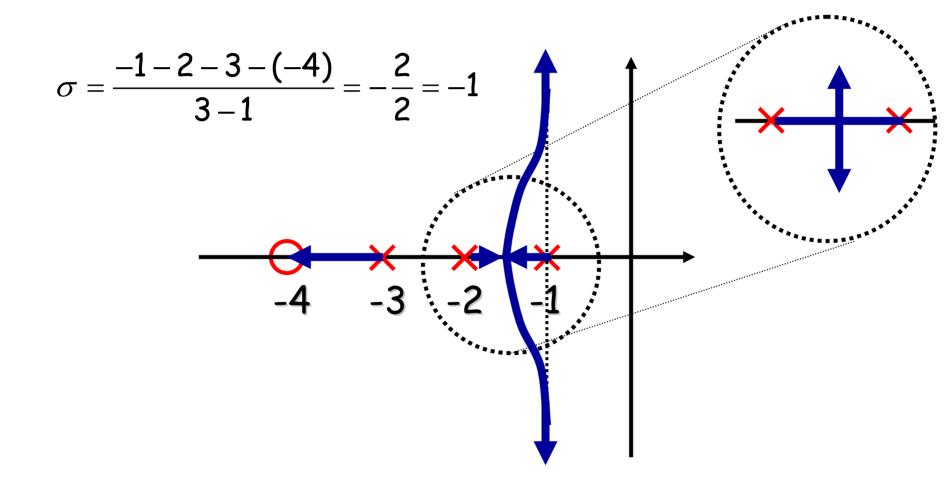
Rule 4 (start of asymptotes

 starting point of the asymptotes, the centroid of the pole-zero plot, is on the real axis at:

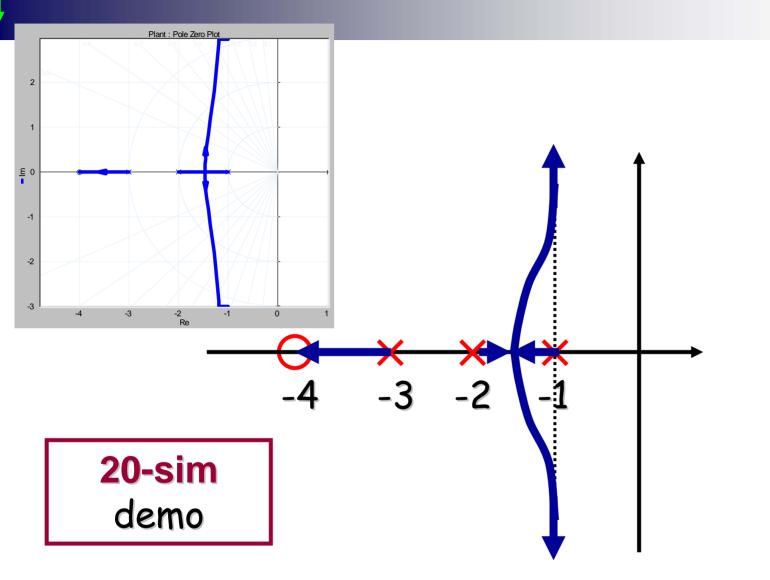
$$\sigma = \frac{\sum \text{pole values of } G'_L - \sum \text{zero values of } G'_L}{n - m}$$

$$\xrightarrow{\bullet} \sigma = \frac{-1 - 2 - 3 - (-4)}{3 - 1} = -\frac{2}{2} = -1$$

Rule 4 (Example)



Rule 4 (20-sim demo)



Rule 5 (breakaway & entry)

• Loci leave (enter) the real axis at a gain K'_{L} that is the maximum (minimum) value of K'_{L} in that region on the real axis. These points are called breakaway (entry) points:

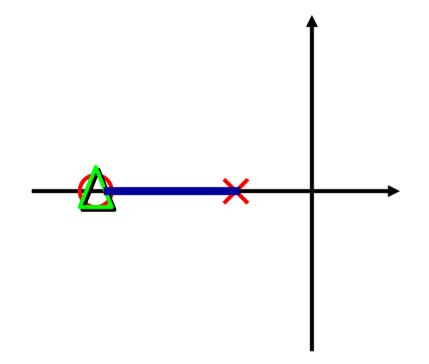
$$\frac{dK'_L}{ds} = -\frac{d}{ds} \left(\frac{1}{G'_L}\right) = 0$$

• Locus segments leave (enter) the real axis at angles of $\pm \pi/2$

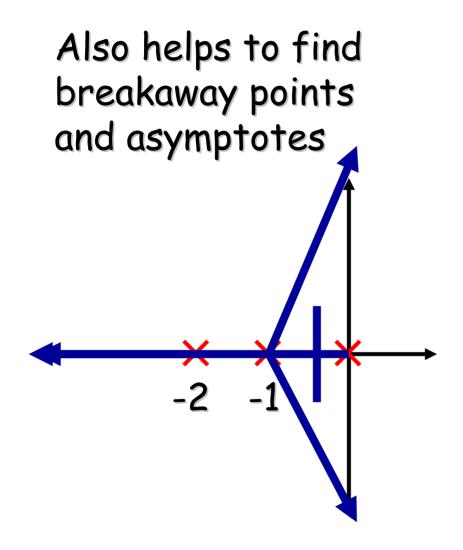
model poles as bodies with a positive charge

model zeros as bodies with a negative charge

a positive charge just left of the pole of the open system is repulsed by the pole and attracted by the zero



Electrical charges model



Far away the 3 poles behave as three poles in -1

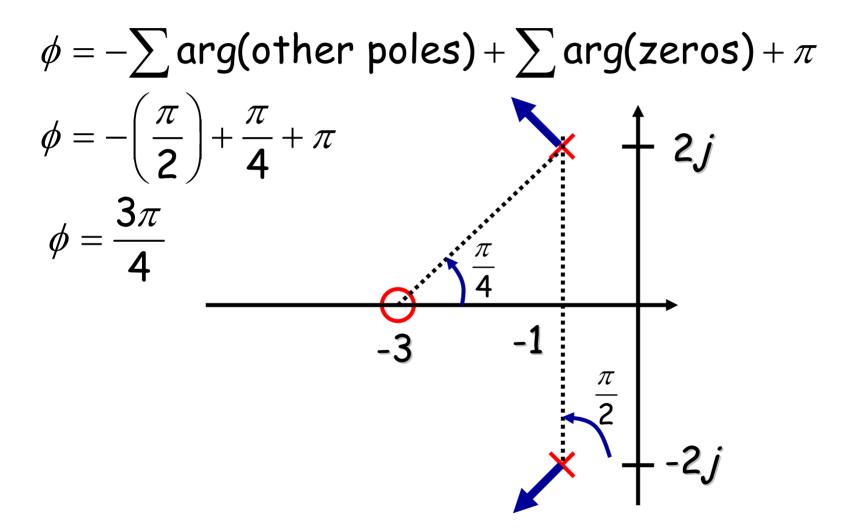
Because of positive charge in -2, breakaway point will be at the right of -0.5 angle of departure \u03c6 of a locus branch from a complex pole is given by:

 $\phi = -\sum \arg(\text{other poles}) + \sum \arg(\text{zeros}) + \pi$

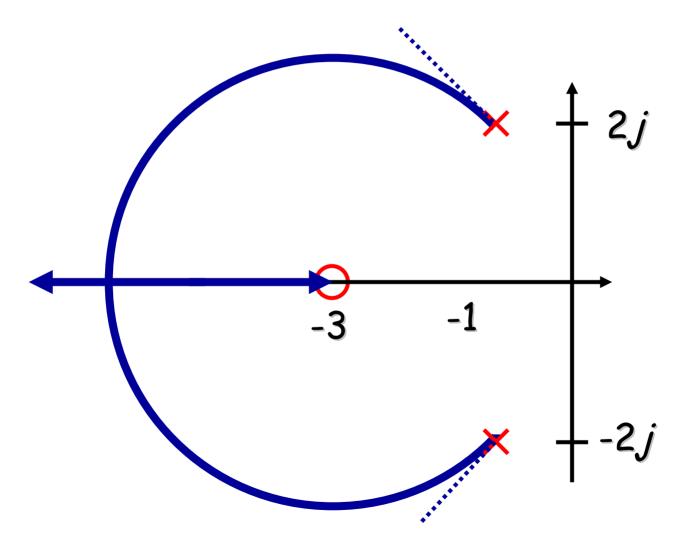
The angle of approach \u00f6 of a locus
 branch to a complex zero is given by:

 $\phi' = \sum \arg(\text{poles}) - \sum \arg(\text{other zeros}) - \pi$

Rule 6 (example)

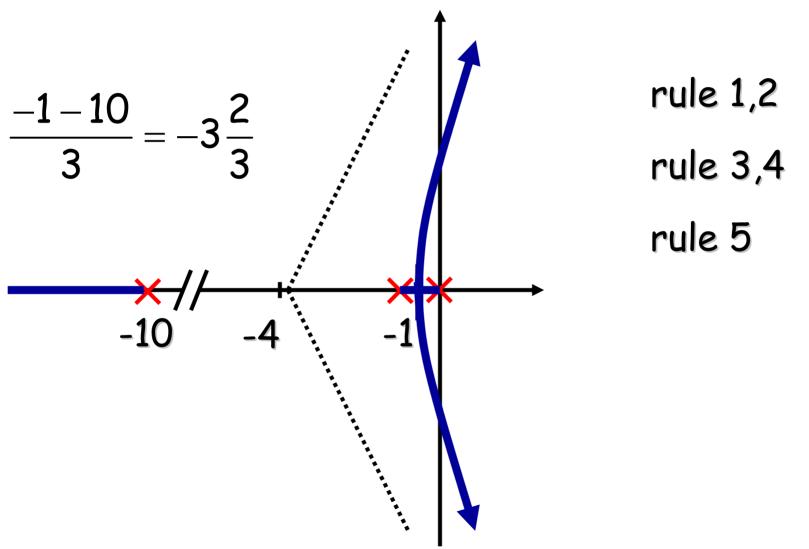


Rule 6 (example)



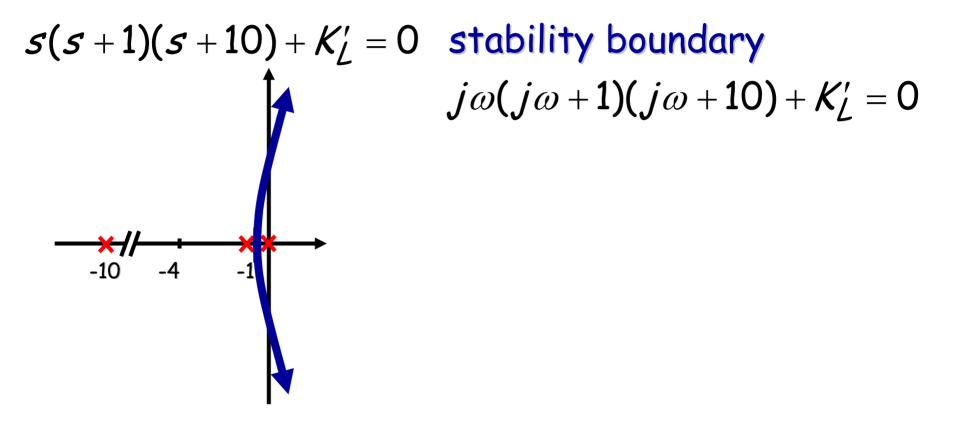
Example (Servo System)

Control Engineering University of Twente



Lecture 4 Root Loci (33)

Control Engineering 2004/2005 © Job van Amerongen

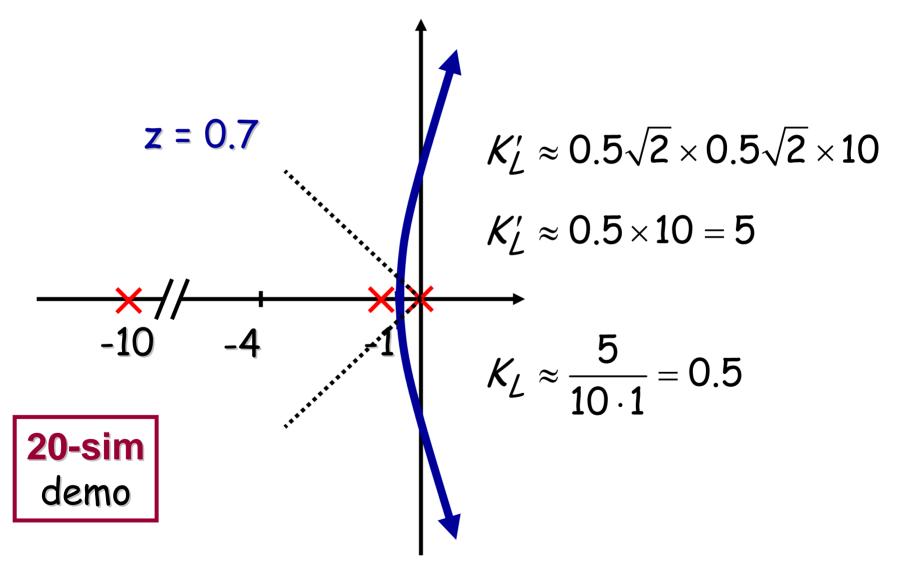


stability boundary $\mathcal{S}(\mathcal{S}+1)(\mathcal{S}+10)+K'_{I}=0$ $j\omega(j\omega+1)(j\omega+10) + K'_{l} = 0$ $j\omega\left(-\omega^2+11j\omega+10\right)+K'_{L}=0$ $\left(-j\omega^{3}-11\omega^{2}+10j\omega\right)+K_{L}^{\prime}=0$ $\left(-\omega^3+10\omega\right)=0$

stability boundary $S(S+1)(S+10)+K'_{I}=0$ $j\omega(j\omega+1)(j\omega+10) + K'_{l} = 0$ $j\omega\left(-\omega^{2}+11j\omega+10\right)+K_{L}^{\prime}=0$ $\left(-j\omega^{3}-11\omega^{2}+10j\omega\right)+K_{L}^{\prime}=0$ $\left(-\omega^3+10\omega\right)=0$ $110 = K'_{I}$ $\omega = 0, \omega = \sqrt{10}$

 $\mathcal{S}(\mathcal{S}+1)(\mathcal{S}+10)+\mathcal{K}'_{\ell}=0$ stability boundary $j\omega(j\omega+1)(j\omega+10) + K'_{l} = 0$ $j\omega\left(-\omega^{2}+11j\omega+10\right)+K_{L}^{\prime}=0$ $\left(-j\omega^{3}-11\omega^{2}+10j\omega\right)+K_{L}^{\prime}=0$ $\left(-\omega^3+10\omega\right)=0$ $K_{I}' = 110$ $K_{L} = \frac{110}{10.1} = 11$ $110 = K'_{I}$ $\omega = 0, \omega = \sqrt{10}$

Example



More than 1 controller parameter

Control Engineering University of Twente

Example:

- Proportional feedback (K_p)
- Velocity / tacho feedback (K_d)

$$\xrightarrow{U} \xrightarrow{+} K_p + K_d S \xrightarrow{1} \xrightarrow{Y} S(S+1)$$

root locus equation: for variations in K_{d} : $\frac{1}{s(s+1)} = -\frac{1}{K_p}$ $S(s+1) + K_p + K_d s = 0$ zero (only for locus!) $S(s+1) + K_p = -\frac{1}{K_d}$

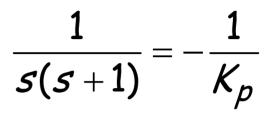
Use RLE for
$$K_d = 0$$

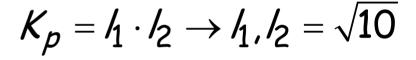
to find poles for desired K_p $\frac{1}{s(s+1)} = -\frac{1}{K_p}$
e.g. $K_p = 10$

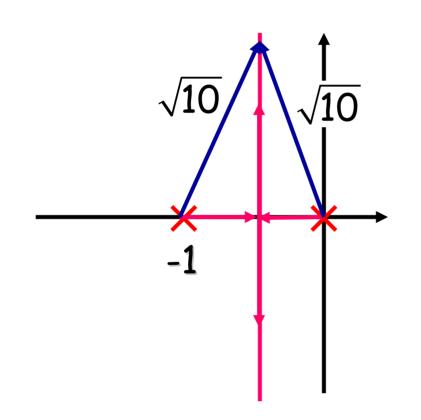
Use RLE for
$$K_d$$

to find poles with $K_p = 10$ $\frac{S}{S(S+1)+10} = -\frac{1}{K_d}$
 $\frac{S}{(S+p_1)(S+p_2)} = -\frac{1}{K_d}$

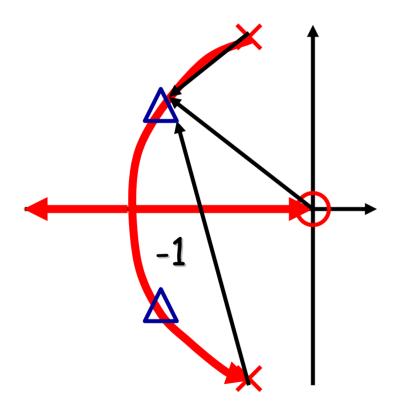
Loci







Loci



$$\frac{s}{s(s+1)+10} = -\frac{1}{K_{d'}}$$

Take care that root locus gain of "proces" = 1

> 20-sim demo

Controlled System

